Перевод: с русского на английский

с английского на русский

тогда... равен

  • 1 тогда ... равен

    Тогда... равен-- The plastic energy is then EA = Ppc4/4r.

    Русско-английский научно-технический словарь переводчика > тогда ... равен

  • 2 равен

    Русско-английский научно-технический словарь переводчика > равен

  • 3 тогда

    Русско-английский научно-технический словарь переводчика > тогда

  • 4 базовый год

    1. base year
    2. base period
    3. base date
    4. basal

     

    базовый год
    базовая дата

    При расчете индексов-первый из ряда лет. Его часто принимают за 100, чтобы можно было сразу в процентах увидеть рост или падение, например, если индекс цен показывает, что нынешний показатель равен 120, это имеет смысл только в сравнении с более ранними показателями. Это можно записать так: 120 (базовый 1985 г. = 100); отсюда ясно, что с 1985 г. цены возросли на 20 %.
    [ http://www.vocable.ru/dictionary/533/symbol/97]

    базовый год
    базисный период
    В прогнозировании, планировании и других экономических расчетах, год (соответственно, период), к которому приводятся для сопоставимости расчетные показатели последующих лет (периодов, шагов расчета), называемые текущими. Если экономические показатели данного года приняты за базу сравнения, то возможны три основных способа сопоставления с ними показателей сравниваемого года (текущих показателей): 1.База сравнения принимается за единицу. Тогда относительные величины, приводящие показатель сравниваемого года к Б.г., называются коэффициентами или показателями кратности и выражаются целым или дробным числом. 2. База сравнения принимается за 100. Тогда относительные величины, приводящие показатели сравниваемого года к Б.г., выражаются процентами или долями процента. 3. База сравнения принимается за 1000. Тогда относительные величины, приводящие показатели сравниваемого года к Б.г., выражаются в промилле (единице, в 10 раз меньшей чем процент). См. также Дисконтирование.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    2.20 базовый год (base year): Исторический период, установленный для сопоставления во времени выбросов ПГ, процессов удаления ПГ или соответствующей информации по ПГ.

    Примечание - Выбросы или процессы удаления в течение условного базового года могут быть определены количественно за определенный период времени, например за реальный год, или быть усреднены за несколько периодов (например, несколько лет).

    Источник: ГОСТ Р ИСО 14064-1-2007: Газы парниковые. Часть 1. Требования и руководство по количественному определению и отчетности о выбросах и удалении парниковых газов на уровне организации оригинал документа

    2.20 базовый год (base year): Исторический период, установленный для сопоставления во времени выбросов ПГ, процессов удаления ПГ или соответствующей информации по ПГ.

    Примечание - Выбросы или процессы удаления в течение условного базового года могут быть определены количественно за определенный период времени, например за реальный год, или быть усреднены за несколько периодов (например, несколько лет).

    Источник: ГОСТ Р ИСО 14064-3-2007: Газы парниковые. Часть 3. Требования и руководство по валидации и верификации утверждений, касающихся парниковых газов оригинал документа

    9.3.1 базовый год (base year): Исторический период, установленный для сопоставления повремени выбросов парниковых газов (9.1.1), процессов удаления парниковых газов (9.1.6) или сопутствующей информации по ПГ.

    Примечание - Выбросы или процессы удаления в течение условного базового года могут быть определены количественно за определенный период времени (например, реальный год) или усреднены за несколько периодов времени (например, лет).

    [ИСО 14064-1:2006]

    Источник: ГОСТ Р ИСО 14050-2009: Менеджмент окружающей среды. Словарь оригинал документа

    Русско-английский словарь нормативно-технической терминологии > базовый год

  • 5 рекомбинационный индекс

    = частота рекомбинации
    [лат. re- — приставка, обозначающая повторность действия или противоположное действие, и combinatio — соединение; лат. index — указатель, показатель]
    количество рекомбинантов по отношению к общему количеству потомков. Согласно С. Дарлингтону, Р.и. равен сумме гаплоидного числа хромосом (n) и количества хиазм (х) в одной мейотической клетке (тогда возможное количество рекомбинантных гамет составляет 2n+x). Р.и. прямо пропорционален расстоянию между генами на хромосоме — в генетическом картировании он принимается за единицу расстояния на генетической карте (единица рекомбинации).

    Толковый биотехнологический словарь. Русско-английский. > рекомбинационный индекс

  • 6 зануление

    1. nulling
    2. neutral grounding
    3. neutral earthing

     

    зануление
    Преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением
    [ ГОСТ 12.1.009-76]

    Защитное зануление в электроустановках напряжением до 1 кВ Преднамеренное соединение открытых проводящих частей с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с заземленной точкой источника в сетях постоянного тока, выполняемое в целях электробезопасности.
    [ПУЭ]

    Защитное заземление или зануление должно обеспечивать защиту людей от поражения электрическим током при прикосновении к металлическим нетоковедущим частям, которые могут оказаться под напряжением в результате повреждения изоляции.
    Защитному заземлению или занулению подлежат металлические части электроустановок, доступные для прикосновения человека и не имеющие других видов защиты, обеспечивающих электробезопасность.
    При занулении фазные и нулевые защитные проводники должны быть выбраны таким образом, чтобы при замыкании на корпус или на нулевой проводник, возникал ток короткого замыкания, обеспечивающий отключение автомата или плавление плавкой вставки ближайшего предохранителя

    [ ГОСТ 12.1.030-81]

    4687

    В сетях с глухозаземленной нейтралью корпус должен быть соединен с нулевым проводником. Нельзя соединять корпус с землей.


    ТЕХНИЧЕСКИЕ СРЕДСТВА ЗАЩИТЫ ОТ ПОРАЖЕНИЯ ЭЛЕКТРИЧЕСКИМ ТОКОМ

    ЗАНУЛЕНИЕ
    В предыдущем номере журнала мы начали разговор о технических средствах защиты от поражения электрическим током, предназначенных для уменьшения тока, проходящего через тело человека при случайном контакте с токоведущими частями или при необходимости выполнения работ под напряжением, до безопасного значения. В первой части материала были рассмотрены назначение и принцип действия защитного заземления, а также показана недопустимость применения защитного заземления в четырехпроводных сетях с глухим заземлением нейтрали. В этих сетях основным средством защиты от поражения током при замыкании фазы на корпус является зануление.

    Зануление — это намеренное соединение металлических нетоковедущих частей с нулевым проводом питающей сети (PE-проводником или PEN-проводником).

    Принцип действия
    При наличии зануления всякое замыкание фазы на корпус приводит к короткому замыканию, отключаемому штатными аппаратами максимальной защиты (автоматическими выключателями или плавкими предохранителями). На рис. 1 показан принцип действия зануления.


    Рис. 1 Принцип действия зануления

    В случае замыкания фазы В на корпус приемника К1 с помощью защитного зануляющего проводника ЗП1 формируется цепь тока короткого замыкания Iкз «фаза В — корпус К1 — зануляющий проводник ЗП1 —нулевой провод PEN — нейтраль обмотки питающего трансформатора». При этом автоматический вы-ключатель А1 снимает питание с неисправного приемника. В результате напряжение прикосновения к корпусу неисправного приемника Uпр = 0. Аналогично при замыкании фазы С на корпус электроприемника К2 срабатывает автоматический выключатель А2. После этого потенциал корпуса К2 также становится равным нулю.
    Технические требования к системе зануления, направленные на обеспечение автоматической защиты от поражения током, приведены в пп. 1.7.79 — 1.7.89 ПУЭ. Согласно п. 1.7.39 ПУЭ в этих сетях применение защитного заземления корпусов электроприемников без их зануления не допускается.

    Зануление и защитное заземление

    В реальных производственных условиях в сетях TN — C непосредственно с нулевым проводом соединяют только корпуса распределительных щитов (зануляют корпус щита). Корпуса всех приемников электроэнергии и нетоковедущие металлоконструкции заземляют, то есть соединяют их заземляющими проводниками ЗП с шиной заземления ШЗ (см. рис. 2).

    4689


    Рис. 2 Схема зануления и защитного заземления

    Так как шина ШЗ всегда имеет электрическую связь с нулевым проводом или с нейтралью обмотки трансформатора, то выполненное с ее помощью «заземление» фактически является занулением корпуса приемника электроэнергии. Например, при замыкании фазы на корпус К1 возникает ток короткого замыкания Iкз, и автоматический выключатель А1 отключает неисправный приемник.
    Пусть приемник с корпусом К3 получает питание от индивидуального трансформатора ТР (фактически от двухпроводной сети, изолированной от земли). Здесь при замыкании полюса сети на корпус будет протекать ток замыкания Iзам по контуру «полюс сети — корпус К3 — заземляющий проводник ЗП — шина заземления ШЗ — сопротивление заземления нейтрали R0 — сопротивление изоляции здорового полюса сети
    Rиз — второй полюс сети». Ток Iзам не отключается аппаратами защиты, так как его значение невелико, будучи ограниченным сопротивлением изоляции Rиз. В контуре этого тока рабочее напряжение сети падает на сопротивлениях Rиз и R0, при этом потенциал корпуса К3 равен падению напряжения на сопротивлении R0 << Rиз (напряжение прикосновения к корпусу К3 безопасно). То есть корпус К3 оказывается заземленным.
    Корпус трансформатора ТР также соединен перемычкой ЗП с шиной заземления. Что это — зануление или заземление? Оказывается, и то, и другое. Если происходит замыкание полюса первичной обмотки на корпус ТР, то перемычка ЗП работает в контуре зануления. Защита срабатывает и отключает трансформатор. Если повреждается вторичная обмотка, то та же перемычка работает в режиме защитного заземления. Трансформатор и получающий от него питание электроприемник не отключаются, а значение напряжения прикосновения к корпусу трансформатора снижается до безопасного.

    Таким образом, в реальных производственных условиях процессы зануления и защитного заземления одинаковы и заключаются в соединении металлических нетоковедущих частей с шиной заземления. Поэтому на практике используется обычно только один термин - заземление.

    Особенности зануления однофазных приемников при отсутствии шины заземления

    Именно однозначное использование термина «заземление» является причиной часто встречающегося на практике неправомерного применения защитного заземления в сетях с заземленным нулевым проводом. Особенно часто это явление встречается в двухпроводных сетях «фаза — нулевой провод» при отсутствии в помещении шины заземления.
    Зачастую в таких условиях зануление корпуса приемника выполняют с помощью заземляющего контакта в питающей трехполюсной вилке: в розетке делают перемычку между нулевым проводом и контактом заземления. При таком соединении в цепи защитного нулевого проводника возникает «разъединяющее приспособление», запрещенное ПУЭ (п. 1.7.83). Тем не менее, учитывая, что при отключении вилки одновременно отключаются и питающие приемник провода, запрещение правил на такой способ выполнения зануления, по-видимому, не распространяется. Здесь функция зануления полностью выполняется, так как обеспечивается срабатывание аппаратов защиты в случае замыкания фазы на корпус.
    Однако при таком соединении может формироваться другой вид опасности — пожароопасные ситуации. Дело в том, что когда в розетке силовые контакты расположены симметрично относительно «заземляющего», вилка может быть включена в любом положении, то есть любой ее контакт может быть подключен произвольно либо к фазному проводу (гнезду розетки), либо к нулевому проводу. При этом не исключается ситуация, когда штатный однополюсный выключатель в электроприемнике может оказаться в цепи не фазного, а нулевого провода. Тогда даже при выключенном вы-ключателе изоляция электроприемника будет непрерывно находиться под фазным напряжением и по контуру зануления будет непрерывно протекать ток утечки. Если имеется какое-либо повреждение изоляции (снижение ее сопротивления), то ток утечки возрастает и выделяющаяся тепловая энергия разогревает место повреждения. Так как изоляционные материалы имеют ионную проводимость (а не электронную, как проводники), то с увеличением температуры сопротивление изоляции уменьшается и соответственно увеличивается ток утечки. Этот процесс роста температуры при отсутствии должного теплоотвода приобретает лавинообразный характер и приводит к дуговому замыканию, то есть к формированию очага воспламенения. По данным ВНИИ противопожарной обороны (г. Балашиха), если в месте повреждения изоляции выделяется мощность 17 Вт, то возможно формирование электрической дуги через 20 часов протекания тока утечки (то есть при начальном значении тока 73 мА такой ток может чувствовать устройство защитного отключения, а не аппараты защиты от тока короткого замыкания).

    Таким образом, для обеспечения безопасного применения однофазных приемников следует применять трехполюсные розетки и вилки с ориентированным (несимметричным) расположением контактов либо дополнительно устанавливать устройство защитного отключения (УЗО). Для обеспечения срабатывания УЗО корпус приемника должен быть заземлен, то есть соединен с любой нетоковедущей металлоконструкцией, имеющей связь с землей. Другой способ обеспечения срабатывания УЗО — подключение защитного нулевого проводника не в розетке, а вне зоны защиты УЗО, то есть перед автоматическим выключателем.
    В следующем номере журнала мы продолжим разговор о технических средствах защиты от поражения электрическим током.

    [Журнал "Новости Электротехники" №4(16) 2002]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > зануление

  • 7 ИБП для централизованных систем питания

    1. centralized UPS

     

    ИБП для централизованных систем питания
    ИБП для централизованного питания нагрузок
    -
    [Интент]

    ИБП для централизованных систем питания

    А. П. Майоров

    Для многих предприятий всесторонняя защита данных имеет жизненно важное значение. Кроме того, есть виды деятельности, в которых прерывания подачи электроэнергии не допускаются даже на доли секунды. Так работают расчетные центры банков, больницы, аэропорты, центры обмена трафиком между различными сетями. В такой же степени критичны к электропитанию телекоммуникационное оборудование, крупные узлы Интернет, число ежедневных обращений к которым исчисляется десятками и сотнями тысяч. Третья часть обзора по ИБП посвящена оборудованию, предназначенному для обеспечения питания особо важных объектов.

    Централизованные системы бесперебойного питания применяют в тех случаях, когда прерывание подачи электроэнергии недопустимо для работы большинства единиц оборудования, составляющих одну информационную или технологическую систему. Как правило, проблемы питания рассматривают в рамках единого проекта наряду со многими другими подсистемами здания, поскольку они требуют вложения значительных средств и увязки с силовой электропроводкой, коммутационным электрооборудованием и аппаратурой кондиционирования. Изначально системы бесперебойного питания рассчитаны на долгие годы эксплуатации, их срок службы можно сравнить со сроком службы кабельных подсистем здания и основного компьютерного оборудования. За 15—20 лет функционирования предприятия оснащение его рабочих станций обновляется три-четыре раза, несколько раз изменяется планировка помещений и производится их ремонт, но все эти годы система бесперебойного питания должна работать безотказно. Для ИБП такого класса долговечность превыше всего, поэтому в их технических спецификациях часто приводят значение важнейшего технического показателя надежности — среднего времени наработки на отказ (Mean Time Before Failure — MTBF). Во многих моделях с ИБП оно превышает 100 тыс. ч, в некоторых из них достигает 250 тыс. ч (т. е. 27 лет непрерывной работы). Правда, сравнивая различные системы, нужно учитывать условия, для которых этот показатель задан, и к предоставленным цифрам относиться осторожно, поскольку условия работы оборудования разных производителей неодинаковы.

    Батареи аккумуляторов

    К сожалению, наиболее дорогостоящий компонент ИБП — батарея аккумуляторов так долго работать не может. Существует несколько градаций качества батарей, которые различаются сроком службы и, естественно, ценой. В соответствии с принятой два года назад конвенцией EUROBAT по среднему сроку службы батареи разделены на четыре группы:

    10+ — высоконадежные,
    10 — высокоэффективные,
    5—8 — общего назначения,
    3—5 — стандартные коммерческие.

    Учитывая исключительно жесткую конкуренцию на рынке ИБП малой мощности, производители стремятся снизить до минимума начальную стоимость своих моделей, поэтому часто комплектуют их самыми простыми батареями. Применительно к этой группе продуктов такой подход оправдан, поскольку упрощенные ИБП изымают из обращения вместе с защищаемыми ими персональными компьютерами. Впервые вступающие на этот рынок производители, пытаясь оттеснить конкурентов, часто используют в своих интересах неосведомленность покупателей о проблеме качества батарей и предлагают им сравнимые по остальным показателям модели за более низкую цену. Имеются случаи, когда партнеры крупной фирмы комплектуют ее проверенные временем и признанные рынком модели ИБП батареями, произведенными в развивающихся странах, где контроль за технологическим процессом ослаблен, а, значит, срок службы батарей меньше по сравнению с "кондиционными" изделиями. Поэтому, подбирая для себя ИБП, обязательно поинтересуйтесь качеством батареи и ее производителем, избегайте продукции неизвестных фирм. Следование этим рекомендациям сэкономит вам значительные средства при эксплуатации ИБП.

    Все сказанное еще в большей степени относится к ИБП высокой мощности. Как уже отмечалось, срок службы таких систем исчисляется многими годами. И все же за это время приходится несколько раз заменять батареи. Как это ни покажется странным, но расчеты, основанные на ценовых и качественных параметрах батарей, показывают, что в долгосрочной перспективе наиболее выгодны именно батареи высшего качества, несмотря на их первоначальную стоимость. Поэтому, имея возможность выбора, устанавливайте батареи только "высшей пробы". Гарантированный срок службы таких батарей приближается к 15 годам.

    Не менее важный аспект долговечности мощных систем бесперебойного питания — условия эксплуатации аккумуляторных батарей. Чтобы исключить непредсказуемые, а следовательно, часто приводящие к аварии перерывы в подаче электропитания, абсолютно все включенные в приведенную в статье таблицу модели оснащены самыми совершенными схемами контроля за состоянием батарей. Не мешая выполнению основной функции ИБП, схемы мониторинга, как правило, контролируют следующие параметры батареи: зарядный и разрядный токи, возможность избыточного заряда, рабочую температуру, емкость.

    Кроме того, с их помощью рассчитываются такие переменные, как реальное время автономной работы, конечное напряжение зарядки в зависимости от реальной температуры внутри батареи и др.

    Подзарядка батареи происходит по мере необходимости и в наиболее оптимальном режиме для ее текущего состояния. Когда емкость батареи снижается ниже допустимого предела, система контроля автоматически посылает предупреждающий сигнал о необходимости ее скорой замены.

    Топологические изыски

    Долгое время специалисты по системам электропитания руководствовались аксиомой, что мощные системы бесперебойного питания должны иметь топологию on-line. Считается, что именно такая топология гарантирует защиту от всех нарушений на линиях силового питания, позволяет фильтровать помехи во всем частотном диапазоне, обеспечивает на выходе чистое синусоидальное напряжение с номинальными параметрами. Однако за качество электропитания приходится платить повышенным выделением тепловой энергии, сложностью электронных схем, а следовательно, потенциальным снижением надежности. Но, несмотря на это, за многолетнюю историю выпуска мощных ИБП были разработаны исключительно надежные аппараты, способные работать в самых невероятных условиях, когда возможен отказ одного или даже нескольких узлов одновременно. Наиболее важным и полезным элементом мощных ИБП является так называемый байпас. Это обходной путь подачи энергии на выход в случае ремонтных и профилактических работ, вызванных отказом некоторых компонентов систем или возникновением перегрузки на выходе. Байпасы бывают ручными и автоматическими. Они формируются несколькими переключателями, поэтому для их активизации требуется некоторое время, которое инженеры постарались снизить до минимума. И раз уж такой переключатель был создан, то почему бы не использовать его для снижения тепловыделения в то время, когда питающая сеть пребывает в нормальном рабочем состоянии. Так появились первые признаки отступления от "истинного" режима on-line.

    Новая топология отдаленно напоминает линейно-интерактивную. Устанавливаемый пользователем системы порог срабатывания определяет момент перехода системы в так называемый экономный режим. При этом напряжение из первичной сети поступает на выход системы через байпас, однако электронная схема постоянно следит за состоянием первичной сети и в случае недопустимых отклонений мгновенно переключается на работу в основном режиме on-line.

    Подобная схема применена в ИБП серии Synthesis фирмы Chloride (Сети и системы связи, 1996. № 10. С. 131), механизм переключения в этих устройствах назван "интеллектуальным" ключом. Если качество входной линии укладывается в пределы, определяемые самим пользователем системы, аппарат работает в линейно-интерактивном режиме. При достижении одним из контролируемых параметров граничного значения система начинает работать в нормальном режиме on-line. Конечно, в этом режиме система может работать и постоянно.

    За время эксплуатации системы отход от исходной аксиомы позволяет экономить весьма значительные средства за счет сокращения тепловыделения. Сумма экономии оказывается сопоставимой со стоимостью оборудования.

    Надо отметить, что от своих исходных принципов отошла еще одна фирма, ранее выпускавшая только линейно-интерактивные ИБП и ИБП типа off-line сравнительно небольшой мощности. Теперь она превысила прежний верхний предел мощности своих ИБП (5 кВА) и построила новую систему по топологии on-line. Я имею в виду фирму АРС и ее массив электропитания Simmetra (Сети и системы связи. 1997. № 4. С. 132). Создатели попытались заложить в систему питания те же принципы повышения надежности, которые применяют при построении особо надежной компьютерной техники. В модульную конструкцию введена избыточность по отношению к управляющим модулям и батареям. В любом из трех выпускаемых шасси из отдельных модулей можно сформировать нужную на текущий момент систему и в будущем наращивать ее по мере надобности. Суммарная мощность самого большого шасси достигает 16 кВА. Еще рано сравнивать эту только что появившуюся систему с другими включенными в таблицу. Однако факт появления нового продукта в этом исключительно устоявшемся секторе рынка сам по себе интересен.

    Архитектура

    Суммарная выходная мощность централизованных систем бесперебойного питания может составлять от 10—20 кВА до 200—300 МВА и более. Соответственно видоизменяется и структура систем. Как правило, она включают в себя несколько источников, соединенных параллельно тем или иным способом. Аппаратные шкафы устанавливают в специально оборудованных помещениях, где уже находятся распределительные шкафы выходного напряжения и куда подводят мощные входные силовые линии электропитания. В аппаратных помещениях поддерживается определенная температура, а за функционированием оборудования наблюдают специалисты.

    Многие реализации системы питания для достижения необходимой надежности требуют совместной работы нескольких ИБП. Существует ряд конфигураций, где работают сразу несколько блоков. В одних случаях блоки можно добавлять постепенно, по мере необходимости, а в других — системы приходится комплектовать в самом начале проекта.

    Для повышения суммарной выходной мощности используют два варианта объединения систем: распределенный и централизованный. Последний обеспечивает более высокую надежность, но первый более универсален. Блоки серии EDP-90 фирмы Chloride допускают объединение двумя способами: и просто параллельно (распределенный вариант), и с помощью общего распределительного блока (централизованный вариант). При выборе способа объединения отдельных ИБП необходим тщательный анализ структуры нагрузки, и в этом случае лучше всего обратиться за помощью к специалистам.

    Применяют параллельное соединение блоков с централизованным байпасом, которое используют для повышения общей надежности или увеличения общей выходной мощности. Число объединяемых блоков не должно превышать шести. Существуют и более сложные схемы с избыточностью. Так, например, чтобы исключить прерывание подачи питания во время профилактических и ремонтных работ, соединяют параллельно несколько блоков с подключенными к отдельному ИБП входными линиями байпасов.

    Особо следует отметить сверхмощные ИБП серии 3000 фирмы Exide. Суммарная мощность системы питания, построенная на модульных элементах этой серии, может достигать нескольких миллионов вольт-ампер, что сравнимо с номинальной мощностью генераторов некоторых электростанций. Все компоненты серии 3000 без исключения построены на модульном принципе. На их основе можно создать особо мощные системы питания, в точности соответствующие исходным требованиям. В процессе эксплуатации суммарную мощность систем можно наращивать по мере увеличения нагрузки. Однако следует признать, что систем бесперебойного питания такой мощности в мире не так уж много, их строят по специальным контрактам. Поэтому серия 3000 не включена в общую таблицу. Более подробные данные о ней можно получить на Web-узле фирмы Exide по адресу http://www.exide.com или в ее московском представительстве.

    Важнейшие параметры

    Для систем с высокой выходной мощностью очень важны показатели, которые для менее мощных систем не имеют первостепенного значения. Это, например, КПД — коэффициент полезного действия (выражается либо действительным числом меньше единицы, либо в процентах), показывающий, какая часть активной входной мощности поступает к нагрузке. Разница значений входной и выходной мощности рассеивается в виде тепла. Чем выше КПД, тем меньше тепловой энергии выделяется в аппаратной комнате и, значит, для поддержания нормальных рабочих условий требуется менее мощная система кондиционирования.

    Чтобы представить себе, о каких величинах идет речь, рассчитаем мощность, "распыляемую" ИБП с номинальным значением на выходе 8 МВт и с КПД, равным 95%. Такая система будет потреблять от первичной силовой сети 8,421 МВт — следовательно, превращать в тепло 0,421 МВт или 421 кВт. При повышении КПД до 98% при той же выходной мощности рассеиванию подлежат "всего" 163 кВт. Напомним, что в данном случае нужно оперировать активными мощностями, измеряемыми в ваттах.

    Задача поставщиков электроэнергии — подавать требуемую мощность ее потребителям наиболее экономным способом. Как правило, в цепях переменного тока максимальные значения напряжения и силы тока из-за особенностей нагрузки не совпадают. Из-за этого смещения по фазе снижается эффективность доставки электроэнергии, поскольку при передаче заданной мощности по линиям электропередач, через трансформаторы и прочие элементы систем протекают токи большей силы, чем в случае отсутствия такого смещения. Это приводит к огромным дополнительным потерям энергии, возникающим по пути ее следования. Степень сдвига по фазе измеряется не менее важным, чем КПД, параметром систем питания — коэффициентом мощности.

    Во многих странах мира существуют нормы на допустимое значение коэффициента мощности систем питания и тарифы за электроэнергию нередко зависят от коэффициента мощности потребителя. Суммы штрафов за нарушение нормы оказываются настольно внушительными, что приходится заботиться о повышении коэффициента мощности. С этой целью в ИБП встраивают схемы, которые компенсируют сдвиг по фазе и приближают значение коэффициента мощности к единице.

    На распределительную силовую сеть отрицательно влияют и нелинейные искажения, возникающие на входе блоков ИБП. Почти всегда их подавляют с помощью фильтров. Однако стандартные фильтры, как правило, уменьшают искажения только до уровня 20—30%. Для более значительного подавления искажений на входе систем ставят дополнительные фильтры, которые, помимо снижения величины искажений до нескольких процентов, повышают коэффициент мощности до 0,9—0,95. С 1998 г. встраивание средств компенсации сдвига по фазе во все источники электропитания компьютерной техники в Европе становится обязательным.

    Еще один важный параметр мощных систем питания — уровень шума, создаваемый такими компонентами ИБП, как, например, трансформаторы и вентиляторы, поскольку их часто размещают вместе в одном помещении с другим оборудованием — там где работает и персонал.

    Чтобы представить себе, о каких значениях интенсивности шума идет речь, приведем для сравнения такие примеры: уровень шума, производимый шелестом листвы и щебетанием птиц, равен 40 дБ, уровень шума на центральной улице большого города может достигать 80 дБ, а взлетающий реактивный самолет создает шум около 100 дБ.

    Достижения в электронике

    Мощные системы бесперебойного электропитания выпускаются уже более 30 лет. За это время бесполезное тепловыделение, объем и масса их сократились в несколько раз. Во всех подсистемах произошли и значительные технологические изменения. Если раньше в инверторах использовались ртутные выпрямители, а затем кремниевые тиристоры и биполярные транзисторы, то теперь в них применяются высокоскоростные мощные биполярные транзисторы с изолированным затвором (IGBT). В управляющих блоках аналоговые схемы на дискретных компонентах сначала были заменены на цифровые микросхемы малой степени интеграции, затем — микропроцессорами, а теперь в них установлены цифровые сигнальные процессоры (Digital Signal Processor — DSP).

    В системах питания 60-х годов для индикации их состояния использовались многочисленные аналоговые измерительные приборы. Позднее их заменили более надежными и информативными цифровыми панелями из светоизлучающих диодов и жидкокристаллических индикаторов. В наше время повсеместно используют программное управление системами питания.

    Еще большее сокращение тепловых потерь и общей массы ИБП дает замена массивных трансформаторов, работающих на частоте промышленной сети (50 или 60 Гц), высокочастотными трансформаторами, работающими на ультразвуковых частотах. Между прочим, высокочастотные трансформаторы давно применяются во внутренних источниках питания компьютеров, а вот в ИБП их стали устанавливать сравнительно недавно. Применение IGBT-приборов позволяет строить и бестрансформаторные инверторы, при этом внутреннее построение ИБП существенно меняется. Два последних усовершенствования применены в ИБП серии Synthesis фирмы Chloride, отличающихся уменьшенным объемом и массой.

    Поскольку электронная начинка ИБП становится все сложнее, значительную долю их внутреннего объема теперь занимают процессорные платы. Для радикального уменьшения суммарной площади плат и изоляции их от вредных воздействий электромагнитных полей и теплового излучения используют электронные компоненты для так называемой технологии поверхностного монтажа (Surface Mounted Devices — SMD) — той самой, которую давно применяют в производстве компьютеров. Для защиты электронных и электротехнических компонентов имеются специальные внутренние экраны.

    ***

    Со временем серьезный системный подход к проектированию материальной базы предприятия дает значительную экономию не только благодаря увеличению срока службы всех компонентов "интегрированного интеллектуального" здания, но и за счет сокращения расходов на электроэнергию и текущее обслуживание. Использование централизованных систем бесперебойного питания в пересчете на стоимость одного рабочего места дешевле, чем использование маломощных ИБП для рабочих станций и даже ИБП для серверных комнат. Однако, чтобы оценить это, нужно учесть все факторы установки таких систем.

    Предположим, что предприятие свое помещение арендует. Тогда нет никакого смысла разворачивать дорогостоящую систему централизованного питания. Если через пять лет руководство предприятия не намерено заниматься тем же, чем занимается сегодня, то даже ИБП для серверных комнат обзаводиться нецелесообразно. Но если оно рассчитывает на то, что производство будет держаться на плаву долгие годы и решило оснастить принадлежащее им здание системой бесперебойного питания, то для выбора такой системы нужно воспользоваться услугами специализированных фирм. Сейчас их немало и в России. От этих же фирм можно получить информацию о так называемых системах гарантированного электропитания, в которые включены дизельные электрогенераторы и прочие, более экзотические источники энергии.

    Нам же осталось рассмотреть лишь методы управления ИБП, что мы и сделаем в одном из следующих номеров нашего журнала

    [ http://www.ccc.ru/magazine/depot/97_07/read.html?0502.htm]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > ИБП для централизованных систем питания

  • 8 продольная дифференциальная защита

    1. longitudinal differential protection
    2. line differential protection

     

    продольная дифференциальная защита
    Защита, действие и селективность которой зависят от сравнения величин (или фаз и величин) токов по концам защищаемой линии.
    [ http://docs.cntd.ru/document/1200069370]

    продольная дифференциальная защита

    Защита, срабатывание и селективность которой зависят от сравнения амплитуд или амплитуд и фаз токов на концах защищаемого участка.
    [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС". Пояснительная записка. Новосибирск 2006 г.]

    продольная дифференциальная защита линий
    -
    [Интент]

    EN

    longitudinal differential protection
    line differential protection (US)

    protection the operation and selectivity of which depend on the comparison of magnitude or the phase and magnitude of the currents at the ends of the protected section
    [ IEV ref 448-14-16]

    FR

    protection différentielle longitudinale
    protection dont le fonctionnement et la sélectivité dépendent de la comparaison des courants en amplitude, ou en phase et en amplitude, entre les extrémités de la section protégée
    [ IEV ref 448-14-16]


    Продольная дифференциальная защита линий

    Защита основана на принципе сравнения значений и фаз токов в начале и конце линии. Для сравнения вторичные обмотки трансформаторов тока с обеих сторон линии соединяются между собой проводами, как показано на рис. 7.17. По этим проводам постоянно циркулируют вторичные токи I 1 и I 2. Для выполнения дифференциальной защиты параллельно трансформаторам тока (дифференциально) включают измерительный орган тока ОТ.
    Ток в обмотке этого органа всегда будет равен геометрической сумме токов, приходящих от обоих трансформаторов тока: I Р = I 1 + I 2 Если коэффициенты трансформации трансформаторов тока ТА1 и ТА2 одинаковы, то при нормальной работе, а также внешнем КЗ (точка K1 на рис. 7.17, а) вторичные токи равны по значению I 1 =I2 и направлены в ОТ встречно. Ток в обмотке ОТ I Р = I 1 + I 2 =0, и ОТ не приходит в действие. При КЗ в защищаемой зоне (точка К2 на рис. 7.17, б) вторичные токи в обмотке ОТ совпадут по фазе и, следовательно, будут суммироваться: I Р = I 1 + I 2. Если I Р >I сз, орган тока сработает и через выходной орган ВО подействует на отключение выключателей линии.
    Таким образом, дифференциальная продольная защита с постоянно циркулирующими токами в обмотке органа тока реагирует на полный ток КЗ в защищаемой зоне (участок линии, заключенный между трансформаторами тока ТА1 и ТА2), обеспечивая при этом мгновенное отключение поврежденной линии.
    Практическое использование схем дифференциальных защит потребовало внесения ряда конструктивных элементов, обусловленных особенностями работы этих защит на линиях энергосистем.
    Во-первых, для отключения протяженных линий с двух сторон оказалось необходимым подключение по дифференциальной схеме двух органов тока: одного на подстанции 1, другого на подстанции 2 (рис. 7.18). Подключение двух органов тока привело к неравномерному распределению вторичных токов между ними (токи распределялись обратно пропорционально сопротивлениям цепей), появлению тока небаланса и понижению чувствительности защиты. Заметим также, что этот ток небаланса суммируется в ТО с током небаланса, вызванным несовпадением характеристик намагничивания и некоторой разницей в коэффициентах трансформации трансформаторов тока. Для отстройки от токов небаланса в защите были применены не простые дифференциальные реле, а дифференциальные реле тока с торможением KAW, обладающие большей чувствительностью.
    Во-вторых, соединительные провода при их значительной длине обладают сопротивлением, во много раз превышающим допустимое для трансформаторов тока сопротивление нагрузки. Для понижения нагрузки были применены специальные трансформаторы тока с коэффициентом трансформации n, с помощью которых был уменьшен в п раз ток, циркулирующий по проводам, и тем самым снижена в n2 раз нагрузка от соединительных проводов (значение нагрузки пропорционально квадрату тока). В защите эту функцию выполняют промежуточные трансформаторы тока TALT и изолирующие TAL. В схеме защиты изолирующие трансформаторы TAL служат еще и для отделения соединительных проводов от цепей реле и защиты цепей реле от высокого напряжения, наводимого в соединительных проводах во время прохождения по линии тока КЗ.

    5313
    Рис. 7.17. Принцип выполнения продольной дифференциальной защиты линии и прохождение тока в органе тока при внешнем КЗ (а) и при КЗ в защищаемой зоне (б)

     

    5314
    Рис. 7.18. Принципиальная схема продольной дифференциальной защиты линии:
    ZA - фильтр токов прямой и обратной последовательностей; TALT - промежуточный трансформатор тока; TAL - изолирующий трансформатор; KAW - дифференциальное реле с торможением; Р - рабочая и T - тормозная обмотки реле

    Распространенные в электрических сетях продольные дифференциальные защиты типа ДЗЛ построены на изложенных выше принципах и содержат элементы, указанные на рис. 7.18. Высокая стоимость соединительных проводов во вторичных цепях ДЗЛ ограничивает область се применения линиями малой протяженности (10-15 км).
    Контроль исправности соединительных проводов. В эксплуатации возможны повреждения соединительных проводов: обрывы, КЗ между ними, замыкания одного провода на землю.
    При обрыве соединительного провода (рис. 7.19, а) ток в рабочей Р и тормозной Т обмотках становится одинаковым и защита может неправильно сработать при сквозном КЗ и даже при токе нагрузки (в зависимости от значения Ic з .
    Замыкание между соединительными проводами (рис. 7.19, б) шунтирует собой рабочие обмотки реле, и тогда защита может отказать в работе при КЗ в защищаемой зоне.
    Для своевременного выявления повреждений исправность соединительных проводов контролируется специальным устройством (рис. 7.20). Контроль основан на том, что на рабочий переменный ток, циркулирующий в соединительных проводах при их исправном состоянии, накладывается выпрямленный постоянный ток, не оказывающий влияния на работу защиты. Две секции вторичной обмотки TAL соединены разделительным конденсатором С1, представляющим собой большое сопротивление для постоянного тока и малое для переменного. Благодаря конденсаторам С1 в обоих комплектах защит создается последовательная цепь циркуляции выпрямленного тока по соединительным проводам и обмоткам минимальных быстродействующих реле тока контроля КА. Выпрямленное напряжение подводится к соединительным проводам только на одной подстанции, где устройство контроля имеет выпрямитель VS, получающий в свою очередь питание от трансформатора напряжения TV рабочей системы шин. Подключение устройства контроля к той или другой системе шин осуществляется вспомогательными контактами шинных разъединителей или. реле-повторителями шинных разъединителей защищаемой линии.
    Замыкающие контакты КЛ контролируют цепи выходных органов защиты.
    При обрыве соединительных проводов постоянный ток исчезает, и реле контроля КА снимает оперативный ток с защит на обеих подстанциях, и подастся сигнал о повреждении. При замыкании соединительных проводов между собой подается сигнал о выводе защиты из действия, но только с одной стороны - со стороны подстанции, где нет выпрямителя.
    5315
    Рис. 7.19. Прохождение тока в обмотках реле KAW при обрыве (а) и замыкании между собой соединительных проводов (б):
    К1 - точка сквозного КЗ; К2 - точка КЗ в защищаемой зоне
    В устройстве контроля имеется приспособление для периодических измерений сопротивления изоляции соединительных проводов относительно земли. Оно подаст сигнал при снижении сопротивления изоляции любого из соединительных проводов ниже 15-20 кОм.
    Если соединительные провода исправны, ток контроля, проходящий по ним, не превышает 5-6 мА при напряжении 80 В. Эти значения должны периодически проверяться оперативным персоналом в соответствии с инструкцией по эксплуатации защиты.
    Оперативному персоналу следует помнить, что перед допуском к любого рода работам на соединительных проводах необходимо отключать с обеих сторон продольную дифференциальную защиту, устройство контроля соединительных проводов и пуск от защиты устройства резервирования при отказе выключателей УРОВ.
    После окончания работ на соединительных проводах следует проверить их исправность. Для этого включается устройство контроля на подстанции, где оно не имеет выпрямителя, при этом должен появиться сигнал неисправности. Затем устройство контроля включают на другой подстанции (на соединительные провода подают выпрямленное напряжение) и проверяют, нет ли сигнала о повреждении. Защиту и цепь пуска УРОВ от защиты вводят в работу при исправных соединительных проводах.

    [ http://leg.co.ua/knigi/raznoe/obsluzhivanie-ustroystv-releynoy-zaschity-i-avtomatiki-5.html]

    Тематики

    Синонимы

    EN

    DE

    • Längsdifferentialschutz, m

    FR

    Русско-английский словарь нормативно-технической терминологии > продольная дифференциальная защита

  • 9 рекомбинационный индекс

    1. recombination index
    2. recombination frequency

     

    рекомбинационный индекс
    частота рекомбинаций

    Количество рекомбинантов по отношению к общему количеству потомков; согласно С. Дарлингтону, Р.и. равен сумме гаплоидного числа хромосом (n) и количества хиазм (х) в одной мейотической клетке (тогда возможное количество рекомбинантных гамет составляет 2n+x); Р.и. прямо пропорционален расстоянию между генами на хромосоме - в генетическом картировании он принимается за единицу расстояния на генетической карте (единица рекомбинации).
    [Арефьев В.А., Лисовенко Л.А. Англо-русский толковый словарь генетических терминов 1995 407с.]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > рекомбинационный индекс

  • 10 рыночное равновесие

    1. market equilibrium
    2. market balance

     

    рыночное равновесие
    Адекватное рыночным законам соотношение спроса и предложения; соответствие между объемом и структурой спроса на товары и объемом и структурой их предложения. Поскольку рыночное равновесие — такое состояние рынка, которое характеризуется равенством спроса и предложения всех товаров и услуг, то. в этом смысле синонимом термина «Равновесие» является сбалансированность. Цены и объемы благ, при которых наблюдается Р.р., соответственно называются равновесными ценами и равновесными объемами: равновесный объем — объем спроса и предложения товара при равновесной цене.; в свою очередь, равновесная цена — такая, при которой объем спроса на рынке равен объему предложения. На графике к статье «Анализ спроса и предложения» показано, что Р.р. достигается в точке пересечения кривых спроса и предложения (она называется «точкой равновесия»), и что отклонения от этой точки приводят либо к неудовлетворенному спросу (дефициту) — когда цена совокупности благ ниже равновесной, либо к избытку этих благ в противоположном случае. Устойчивым (стабильным) Р.р. может быть в условиях, когда силы, воздействующие на рынок в разных направлениях. взаимно уравновешиваются. Но поскольку условия постоянно меняются, то Р.р. остается во многом теоретической абстракцией, недостижимой на практике в полном объеме и тем более на относительно длительное время. Следует различать общее Р.р. и различные виды (уровни) частного Р.р. в отдельных секторах и сегментах рынка. Например, Р.р. инвестиционного рынка, рынка труда, финансового рынка, с одной стороны, и рынка отдельных товаров и услуг (рынков нефти, автомобилей, туристических путевок, вакансий, кредитов, долгов и т.п) — с другой. Безусловна связь между ними: частное равновесие в отдельных случаях может быть достигнуто и при отсутствии общего Р.р..в экономике. Однако, как правило, цены, спрос и предложение по каждому товару зависят от совокупности цен, спроса и предложения по всем товарам и, следовательно, общее равновесие может существовать только тогда, когда оно оказывается «структурным» Р.р.. Здесь следует отметить особую роль частного Р.р. на таком секторе, как денежный рынок (См. Денежное равновесие). В принципе Р.р. может устанавливаться либо автоматически в результате действия рыночного механизма, либо расчетным путем, например, на основе планового ценообразования, применявшегося на протяжении примерно семи десятилетий в б. СССР в условиях централизованно планируемой экономики и доказавшего свою весьма низкую эффективность, или на основе теории оптимального ценообразования, разрабатывавшейся советскими экономистами-математиками, но не получившей практической проверки. Как показал опыт, в рыночных экономиках уровень равновесных цен наиболее высок при монополизированной структуре рынка (см. Монополия) и наиболее низок в условиях свободной конкуренции. Либерализация цен, проведенная в России в начале 1992 г., означала переход к системе равновесных цен, устанавливаемых в основном автоматически, действием рыночного механизма, однако в экономике, унаследовавшей высокий уровень монополизации производства. Последнее обстоятельство во многом предопределило ускоренную инфляцию, и хотя равновесие на рынке было достигнуто (впервые за многие десятилетия!), уровень равновесных цен оказался чрезвычайно высоким. О научном исследовании вопросов рыночного равновесия см. в ст. Равновесие. См. также: Аукционер Вальраса, «Нащупывание»,, Паутинообразная модель, Рынок.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > рыночное равновесие

  • 11 В третьей области

    1. S

    В третьей области показатель степени равен 8 - 10, а влажность отпускаемого пара более 0,2 %. В этой области процесс носит кризисный характер и действительный уровень воды в барабане приближается к пароотборным трубам.

    Точка перехода из 2-й области в 3-ю называется критической и работа сепарационных устройств в этой области недопустима. Работа котла в 3-й области сильно зависит от нагрузки, при этом влажность отпускаемого пара составляет 0,2 - 1,0 % и более. Ленточные солемеры показывают резкое увеличение солесодержания пара (броски).

    С паровой нагрузкой котла D связаны следующие характеристики сепарационных устройств:

    массовая нагрузка зеркала испарения

    x014.gif

    осевая подъемная скорость пара

    x016.gif

    удельная паровая безразмерная нагрузка k [9[

    x018.gif

    где Fз.и. - площадь зеркала испарения (или площадь пароприемного потолка).

    Следующий параметр, который существенно влияет на величину влажности пара, а значит и на величину критических нагрузок, это высота активного сепарационного объема. Связь между влажностью пара, паропроизводительностью и высотой парового объема hп можно представить следующей формулой [5]

    x020.gif (4)

    где М- размерный коэффициент, определяемый физическими свойствами воды и пара.

    Как видно из этой формулы, существует обратно пропорциональная зависимость между влажностью пара и высотой парового объема. Экспериментально было показано, что при увеличении высоты парового объема более 1000 мм, влажность пара уже практически мало зависит от дальнейшего ее увеличения [4] - [7].

    На работу сепарационных устройств котлов существенное влияние оказывает солесодержание котловой воды (SKB). Проявляется это следующим образом. При работе котла при постоянной паропроизводительности при увеличении солесодержания котловой воды происходит очень плавное увеличение солесодержания пара, при достижении определенного значения солесодержания котловой воды происходит резкое увеличение влажности пара котла (солесодержания), регистрирующие солемеры отмечают резкое увеличение солесодержания пара (бросок). Объяснить это можно следующим образом: по мере увеличения концентрации веществ в котловой воде и прежде всего коллоидных частиц оксидов железа, шлама и др. веществ, поверхностный слой приобретает структурную вязкость. Длительность существования паровых пузырей до их разрушения увеличивается (набухание), пленки паровых пузырей успевают утониться и при разрыве их образуется большое количество мелких капель (трудно сепарируемых), вода приобретает способность к вспениванию. Значение солесодержания котловой воды, при котором происходит резкое увеличение влажности пара, называется критическим (x022.gif). Величина критического солесодержания зависит от давления пара в котле, конструкции сепарационных устройств, солевого состава воды («букета»), паровой нагрузки сепарационных устройств и т.д. Наиболее точно критическое солесодержание котловой воды можно определить только на основании теплохимических испытаний конкретного котла. Ориентировочно для котлов низкого давления величина критического солесодержания составляет около 3000 мг/кг, для котлов среднего давления - 1300 - 1500 мг/кг, а для котлов высокого давления - 300 - 500 мг/кг.

    Одним из вариантов приспособления работы котлов на воде закритического солесодержания при умеренных значениях непрерывной продувки является применение ступенчатого испарения котловой воды. Его сущность состоит в том, что водяной объем барабана и парообразующие циркуляционные контуры разбиваются на два или три независимых отсека с подачей всей питательной воды только в 1-й отсек и отводом воды в продувку из последнего отсека. При такой схеме питания резко возрастает «внутренняя» продувка первого (чистого) отсека, которая будет равна (nп + Р) % (при выполнении котла, например по двухступенчатой схеме испарения), а увеличение продувки будет составлять в x024.gif раза, по сравнению с котлом без ступенчатого испарения. В связи с этим концентрация солей в котловой воде 1-й ступени резко уменьшается и соответственно улучшается качество пара. Для 2-й ступени испарения концентрация солей продувочной воды будет практически такой же, как и у котла без ступенчатого испарения (при одинаковых значениях непрерывных продувок Р = const для обеих схем). Если принять, что коэффициенты выноса (или влажность пара) до и после перевода котла на ступенчатое испарение были одинаковыми, то качество пара (солесодержание) котла при переводе на ступенчатое испарение будет выше, чем у котла с одноступенчатой схемой испарения. Если же качество пара (солесодержание) котла со ступенчатым испарением принять одинаковым, как и у котла без ступеней испарения, то тогда котел со ступенчатым испарением будет работать с меньшей величиной непрерывной продувки (чем котел без ступеней испарения). В отечественном котлостроении в качестве сепараторов пара последних ступеней испарения применяют, как правило, выносные циклоны. Выносные циклоны - это устройства, которые лучше всего приспособлены для работы на воде повышенного солесодержания. (За счет развития соответствующей паровой высоты и использования центробежных сил для подавления вспенивания).

    В котлах высокого давления наряду с капельным уносом имеет место значительный избирательный унос различных солей и прежде всего кремнекислоты (SiO2), за счет непосредственного физико-химического растворения солей в паре. Избирательный вынос кремнекислоты (при рН = 9,0 - 12,0) для котлов с давлением 115 кгс/см2 составляет 2,0 - 1,0 %, а для котлов с давлением 155 кгс/см2 - 4,0 - 2,5 % [9].

    Для снижения кремнесодержания в паре котлов высокого давления в сепарационной схеме предусматривается паропромывочное устройство. Наличие этого устройства приводит к некоторым особенностям работы всей сепарационной схемы котлов высокого давления, по сравнению с котлами среднего давления.

    В котлах высокого давления эффективность паропромывочного устройства характеризуется коэффициентом промывки

    x026.gif                                                          (5)

    где SiO2н.п. - кремнесодержание пара на выходе из барабана;

    SiO2н.п. - кремнесодержание питательной воды.

    Коэффициент уноса с паропромывочного устройства Кпромопределяется по формуле

    x028.gif                                                          (6)

    где SiO2пром - кремнесодержание воды на паропромывочном устройстве.

    Для котлов высокого давления по данным испытаний Кпром составляет 8 - 10 %.

    Кремнесодержание промывочной воды определяется по формуле

    x030.gif                                                (7)

    где SiO2сл - кремнесодержание воды на сливе с паропромывочного устройства.

    Степень очистки пара на паропромывочном устройстве определяется по формуле

    x032.gif                                                            (8)

    где SiO2н.п.(до) - кремнесодержание насыщенного пара до паропромывочного устройства.

    Кремнесодержание пара до паропромывочного устройства определяется из следующей формулы

    SiO2н.п.(до) = К · SiO2к.в,                                                    (9)

    где SiO2к.в. - кремнесодержание котловой воды;

    К - коэффициент уноса кремниевой кислоты из котловой воды в пар до промывки.

    Из приведенных формул следует, что кремнесодержание пара после промывки (пар котла SiO2н.п.) зависит как от кремнесодержания питательной воды, так и от кремнесодержания пара до промывки.

    В конечном итоге чем ниже будет кремнесодержание промывочной воды (SiO2пром), тем чище будет пар котла. Концентрация кремнекислоты в промывочном слое зависит, как от качества питательной воды, так и от количества кремнекислоты, поступающей из парового объема до промывки. При неналаженной работе сепарационных устройств до промывки, наряду с избирательным уносом [формула (9)] возможен вынос значительного количества капель котловой воды, где кремнесодержание в 5 - 8 раз выше, чем в питательной воде. Попадание капель котловой воды на промывку (капельный унос) приводит к увеличению кремнесодержания промывочной воды и, как следует из формулы (6), приводит к увеличению кремнесодержания пара котла.

    Качество пара котла зависит от следующих основных факторов:

    Источник: СО 34.26.729: Рекомендации по наладке внутрикотловых сепарационных устройств барабанных котлов

    Русско-английский словарь нормативно-технической терминологии > В третьей области

См. также в других словарях:

  • ПОСТНИКОВА СИСТЕМА — натуральная система, гомотопическая резольвента, П разложение общего типа, последовательность расслоений слоями к рых являются Эйленберга Маклейна пространства К(p п, п), где p п нёк рая группа (абелева при п>1). Введена М. М. Постниковым [1] …   Математическая энциклопедия

  • РАЗЛИЧАЮЩАЯ — кодепь, препятствие к продолжению гомотопии между отображениями. Пусть X нек рое клеточное пространство, Y односвязное топологич. пространство; пусть, далее, даны два отображения f, g: . и гомотопия (где I=[0, 1] и Xn есть n мерный остов… …   Математическая энциклопедия

  • КРИВОЛИНЕЙНЫЙ ИНТЕГРАЛ — интеграл по кривой. Пусть в тг мерном евклидовом пространстве задана спрямляемая кривая длина дуги и на кривой g задана функция F=F(x(s)). К. и. определяется равенством (справа интеграл по отрезку) и наз. криволинейным интегралом первого рода,… …   Математическая энциклопедия

  • Войны за независимость Шотландии — Войны за независимость Шотландии  серия военных конфликтов, имевших место между независимыми Королевством Шотландией и Королевством Англией в конце XIII начале XIV веков. Первая война (1296 1328 г.г.) началась с английского вторжения в… …   Википедия

  • Коэффициент корреляции — (Correlation coefficient) Коэффициент корреляции это статистический показатель зависимости двух случайных величин Определение коэффициента корреляции, виды коэффициентов корреляции, свойства коэффициента корреляции, вычисление и применение… …   Энциклопедия инвестора

  • Корреляция — (Correlation) Корреляция это статистическая взаимосвязь двух или нескольких случайных величин Понятие корреляции, виды корреляции, коэффициент корреляции, корреляционный анализ, корреляция цен, корреляция валютных пар на Форекс Содержание… …   Энциклопедия инвестора

  • Транспортная сеть — В теории графов транспортная сеть   ориентированный граф , в котором каждое ребро имеет неотрицательную пропускную способность и поток . Выделяются две вершины: источник и сток такие, что любая другая вершина сети лежит на пути из …   Википедия

  • КВАНТОВАЯ МЕХАНИКА — (волновая механика), теория, устанавливающая способ описания и законы движения микрочастиц (элем. ч ц, атомов, молекул, ат. ядер) и их систем (напр., кристаллов), а также связь величин, характеризующих ч цы и системы, с физ. величинами,… …   Физическая энциклопедия

  • Теорема Гаусса —     Классическая электродинамика …   Википедия

  • Олигополия — (Oligopoly) Определение олигополии, олигополистический рынок Информация об определении олигополии, олигополистический рынок Содержание Содержание Олигополистический Теории олигополистического Организационно экономические формы концентрации… …   Энциклопедия инвестора

  • НОГА — НОГА. Нога как целое и кости как рычаги. Тело человека при стоянии и передвижении опирается на каудальные конечности и своим вертикальным положением резко отличается от положения прочих млекопитающих. В процессе установления двуногой формы… …   Большая медицинская энциклопедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»